HB860MB 混合伺服使用说明书

一、产品简介

1

新一代混合伺服是一款具有创新特点的产品,采用最新专用电机控制 DSP芯片和应用矢量型闭环控制技术,从而彻底克服开环步进电机丢 步的问题,同时也能明显提示电机的高速性能、降低电机的发热程度 和减小电机的振动,从而提升机器的加工速度和精度以及降低机器的 能耗。此外,在电机连续过载时,驱动器会输出报警信号,具有与交 流伺服系统同样的可靠性,适配 86 全系列混合步进伺服电机。供电电 压采用 24-80VAC 或 24-110VDC 的安全电源,达到安全标准。带 6 位数码管显示及 5 位调试按键,可设置参数和监视电机运行状态。

二、电气和环境指标

1.电气指标

参数	最小值	典型值	最大值	单位
连续输出电流	0	_	8	А
输入电源电压	24	50	80	VAC
逻辑输入电流	7	10	20	mA
脉冲频率	0	-	200	kHz
绝缘电阻	500			MΩ

2.使用环境及参数

冷却方式	自然冷却或外加散热器			
	使用场合	尽量避免粉尘、油雾及腐蚀性气体		
徒田五培	温度	0 ℃ -5 ℃		
使用坏境	湿度	40-90%RH		
	震动 10-55Hz/0.15mm			
保持温度	-20 ℃ -65 ℃			
重量	约 1000 克			

注意:驱动器的可靠工作温度通常在 60℃以内,电机正常工作温度为 80℃以内 安装驱动器时请采用直立侧面安装,使散热器表面形成较强的空气对流,必要时 靠近驱动器或者电机安装风扇,强制散热。 三、接线

1) 电源端子定义

序号	符号	功能定义
1	AC	交流电源端子一
2	AC	般接交流 50V
3	B-蓝	如无对应颜色,
4	B+黄	动力线接线方式
5	A-红	颜色按电机上标
6	A+绿	签接

2) 驱动器控制端子(NC1) 44 引脚插头定义

引脚	符号	说明	引脚	符号	说明
3	PUL+	脉冲输入正	8	ENA-	使能输入负
4	PUL-	脉冲输入负	9	Pend+	定位完成输出正
5	DIR+	方向输入正	10	Pend-	定位完成输出负
6	DIR-	方向输入负	11	ALM+	报警输出正
7	ENA+	使能输入正	12	ALM-	报警输出负

3) 驱动器编码器端子(NC2) 15 引脚插头定义

44 引脚	符号	颜色	说明	9引脚
1	EA+	黑	编码器A信号正	1
2	EB+	黄	编码器 B 信号正	3
3	GND	白	编码器电源地	6
11	EA-	棕	编码器A信号负	5
12	EB-	绿	编码器 B 信号负	4
13	VCC	红	编码器+5V 输入	2

四、拨码开关功能介绍

驱动器在将所有调试功能集中于显示面板外。仍保留有6位拨码开关设 定功能,以适用不同用户使用驱动器的习惯

脉冲细分设定			电机方向	开/关闭环选择	
SW1	SW2	SW3	SW4	SW5	SW6

细分设定

步数/圈	SW1	SW2	SW3	SW4
Default	off	off	off	off
800	on	off	off	off
1600	off	on	off	off
3200	on	on	off	off
6400	off	off	on	off
12800	on	off	on	off
25600	off	on	on	off
51200	on	on	on	off
1000	off	off	off	on
2000	on	off	off	on
4000	off	on	off	on
5000	on	on	off	on
8000	off	off	on	on
10000	on	off	on	on
20000	off	on	on	on
40000	on	on	on	on

五、控制面板的操作流程及功能介绍

六、 操作流程图

七、面板操作说明

按" MOOE"键切换主菜单。按"ENT"键进入设定界面,数码管即显示当前参数的数值,并 且对应有闪烁位,响应的闪烁位表示当前设定位,即按上(▲)、下(▼)键即可设定响应的闪烁位 的数值。按(◄)键即可向左移动并设定闪烁位。设定完毕后按"Ent"键返回上级目录完成输入。 再次按"Ent"键可查讯是否设置完成。

1、主菜单主要包括:

- 1) 实时监视界面;
- 2) 系统参数设定界面;
- 3) 速度梯形测试模式参数设定界面;
- 4) 历史故障查询。
- 5) 参数保存

2、实时监视界面

- 1) 速度实时监视:显示码" ⊆ □", 0x11单位: 0.01RPS
- 2) 电流实时监视:显示码" I DD", 0x05单位: 0.01A
- 3) 位置跟踪误差实时监视:显示码"E [", 0x1D单位:脉冲数
- 4) 当前驱动器类型:显示码"HBS 01"。

上电时,显示"HBS",并与当前驱动器通讯。若通讯正常,则显示"HBS 01",按"Ent" 键进入实时监视界面,若通讯异常,则显示"[on[rr"。

3、系统参数设定界面

1) 位置环 P:显示码 "PR_□□□2" 可设定范围: 1~32767;
 2) 位置环 I:显示码 "PR_□□13" 可设定范围: 1~32767;
 3) 高速位置环 D:显示码 "PR_□□14" 可设定范围: 1~32767;
 4) 速度前馈 Kvff:显示码 "PR_□□15" 可设定范围: 1~32767;
 5) 每转给定脉冲数:显示码 "PR_□□16" 可设定范围: 200~32767;
 6) 码盘每转脉冲数:显示码 "PR_□□17" 可设定范围: 200~32767;
 7) 位置误差限:显示码 "PR_□□18" 可设定范围: 10~32767;
 8) 低速抗振速度最高值:显示码 "PR_□□19" 可设定范围: 1~40;
 9) 保持电流百分比:显示码 "PR_□18" 可设定范围: 1~100;
 10) 开环电流百分比:显示码 "PR_□18" 可设定范围: 1~100;
 11) 闭环电流百分比:显示码 "PR_□18" 可设定范围: 1~100;
 12) 抗振系数:显示码 "PR_□14" 可设定范围: 0~32767;

13) 输入滤波选择:显示码 "PR_□ 5",可设定范围:0~1;
14) 输入滤波时间:显示码 "PR_□ 6",可设定范围:0~32767;
15) 使能电平选择:显示码 "PR_□ 7",可设定范围:0~1;
16) 故障输出选择:显示码 "PR_□ 8",可设定范围:0~1;
17) 低速抗震系数:显示码 "PR_□ 8",可设定范围:0~2000;
18) 脉冲输入模式选择:显示码 "PR_□ 8",可设定范围:0~65536;
19) 初始化参数:显示码 "PR_□ 8",可设定范围:0~1,默认

4、历史故障查询

```
1) 当前故障:显示码"Er□ == ";
```

- 2) 上一次故障:显示码 "Er | 日 ";
- 3) 第二次故障:显示码 "Er 2 EE";
- 4) 第三次故障:显示码 "Er 3 88":
- 5) 第四次故障:显示码 "Er H EE":
- 6) 第五次故障:显示码"ErSEE";
- 7) 第六次故障:显示码 "Er E EE";
- 8) 第七次故障:显示码 "Er 7 EE";
- 9) 第八次故障: 显示码 "ErB EH";
- **10)**第九次故障:显示码"Er EI EII";

故障代码意义分别如下(不是所有驱动器都具有全部下面故障检测功能):

- 1: 过流;
- 2: 过压;
- 3: 欠压;
- 4: 缺相;
- 5: 编码器故障;
- 6: 限位开关动作;
- 7: 位置跟踪误差越限;
- 8: 刹车开关动作失败;
- 9: 电流采样回路开路;
- 10: E 读写故障;
- 11: I2T过热故障;
- 12: 超速故障;

5、参数保存

在调试板中,提供了5组备用参数可存储空间,

- 第一组 EEPROM,显示码"EEP 1"。
 第二组 EEPROM,显示码"EE 2"。
 第三组 EEPROM,显示码"EEP 3"。
 第四组 EEPROM,显示码"EEP 4"。
 第五组 EEPROM,显示码"EEP 5"。
 具体操作步骤如下:
- 1、 选择好需要的组号,按Ent进入显示" EEP -"表示等待用户下一步操作。
- 2、 若要保存驱动器当前参数,则长按◀)键 3秒,此时调试板显示如下 "EEP " => "EEP -" => "EEP -" => "SLAFE",开始把当前参数保存到驱动器中;
- 3、 若要把驱动器中当前参数保存到调试板中的EEPROM,则长按(▲)键 3 秒,此时调试板显示如下"EEP 凵"==>"EEP -凵"==>"EEP--凵"==>"EEP--凵"==>"EEP--凵"==>"EEP--凵"==>" SLP-L",开始把驱动器中当前参数保存到调试板中的该组EEPROM中;
- 4、 若要把调试板中的该组EEPROM中参数保存到驱动器中的EEPROM,则长按(▼)键 3
 秒,此时调试板显示如下: "EEP d" ==> "EEP -d" ==> "EEP -d" ==> "EEP -d" ==> "EEP -d" ==>
 "与上吊-上",开始把驱动器中当前参数保存到调试板中的该组 EEPROM中;
- 5、 参数保存完毕后,若保存结果正确,则显示" F □ □ □ □ , 若保存出错,则显示 "E □ □ □ "。